Your Web News in One Place

Help Webnuz

Referal links:

Sign up for GreenGeeks web hosting
March 11, 2011 04:06 pm PST

How earthquakes work, and how science makes us safer

(Reuters) The very powerful earthquake that hit Japan today was even more powerful than everybody first thought. US Geological Survey seismologists upgraded it to a magnitude 9.0—making it the most powerful earthquake to ever hit Japan. It's not unusual for scientists to revise their calculations on the strength of an earthquake, reports New Scientist. In fact, we're likely to see more recalculation on this quake. To find out more about the science happening behind the scenes of this disaster, I spoke this morning with geophysicist Brian Shiro, who works out of the NOAA Pacific Tsunami Warning Center in Ewa Beach, Hawaii. He gave me some good background information on the science of seismology and plate tectonics, and the changing technology that's making people safer in the face of powerful natural forces. Maggie Koerth-Baker: My first thought, when I heard about this earthquake, was to wonder whether it had any connection to the recent earthquake in Christchurch, New Zealand. They're both part of the Pacific Rim, could what happens on one fault line affect what happens on another? Brian Shiro: It's doubtful that there's a connection to the New Zealand earthquake, but the question isn't unreasonable. There's actually a lot that seismologists have been learning about the ways that earthquakes could possibly affect one another. If you'd asked this five years ago, they'd have said, "No way." But now, particularly after studying the Sumatra earthquake and tsunami [from 2004], there's been a lot of people looking into that question. The idea of one earthquake triggering another seems to have some legs to it. It's not a crazy idea. But the jury is still out on how often it happens. MKB: How is the Pacific Rim set up? In the maps from grade school, it looks like one, continuous gap that circles the Pacific Ocean, but I'm assuming there's more to it than that. BS: It's a bunch of distinct faults that, taken as a whole, create this so-called Ring of Fire where most earthquakes and volcanoes and other seismic activity originates. I like to think of the Earth like hard boiled egg. If you crack it a little bit, that's like the plates. The plate boundaries are riding on mushy mantle. People also use the baseball analogy, which is maybe even better because of the stitching. You can see the seam on a baseball where it's connected all the way around, but you can also see the stitching. The Pacific Rim is like that. Even though the fault systems are distinct, it forms a continuous band. It's a series of subduction zones that mark areas in the Pacific Ocean where the Pacific plate is sliding underneath another one. MKB: Why are there so many more earthquakes and volcanoes in this region. Is there something that makes the seismic activity in the Pacific Rim different? BS: It's a matter of numbers really. The Pacific Rim covers a huge portion of the Earth. Really, there's just that much more opportunity for things to happen. Look at the various seas and oceans. The Mediterranean, for instance, has one subduction zone. The Atlantic has none. The Indian Ocean has two. The Pacific has on the order of 10....


Original Link: http://feeds.boingboing.net/~r/boingboing/iBag/~3/o0FNNabrtjA/how-earthquakes-work.html

Share this article:    Share on Facebook
View Full Article